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Abstract. The effects that blowing and suction have on the free convection boundary layer on a vertical surface with
a given surface heat flux are considered. Similarity equations are derived first, their solution being dependent on the
wall flux exponent n and a dimensionless transpiration parameter v, (as well as on the Prandtl number). The range
of existence of solutions is considered, with it being shown that solutions exist only for n > —1 for blowing, whereas
they exist for all n > n, for suction, where n, < —1 and depends on vy. The solutions for strong suction and blowing
are derived. In the latter case the asymptotic structure is found to be different for n in the three ranges
~1<n<-1i, —l<n<Z, n>} Results are then obtained for the non-similarity problem of constant heat flux with
a constant transpiration velocity. Solutions valid for large distances from the leading edge for both suction and
blowing are derived.

1. Introduction

One method of controlling convective boundary-layer flows is to inject or to withdraw fluid
through the porous bounding heated wall. This can lead to enhanced heating (or cooling) of
the system and can help to delay the transition from laminar flow. Previous work on the
effects of blowing and suction on free convection boundary layers has been confined to cases
where there is a prescribed wall temperature. Eichhorn [1] obtained the power-law variations
in wall temperature and transpiration velocity which gives rise to a similarity solution for the
flow on a vertical surface. He presented results for a range of values of his (non-dimensional)
transpiration parameter.

The case of uniform suction and blowing through an isothermal vertical wall was treated
first by Sparrow and Cess [2]. They obtained a solution in series valid near the leading edge.
This problem was considered in more detail by Merkin [3], who obtained asymptotic
solutions, valid at large distances from the leading edge, for both suction and blowing. The
next order corrections to the boundary-layer solution for this problem were obtained by
Clarke [4], who did not invoke the usual Boussinesq approximation. The solutions for strong
suction and blowing on general body shapes which admit a similarity solution has been given
by Merkin [5]. A transformation of the equations for general blowing and wall temperature
variations has been given by Vedhanayagam et al. [6]. The case of a heated isothermal
horizontal surface with transpiration has been discussed in some detail first by Clarke and
Riley [7, 8], and more recently by Lin and Yu [9].

The corresponding case of the free convection boundary-layer flow with suction or blowing
through a porous wall with a prescribed heat flux has not been treated previously, and this is
what we consider here. We discuss two aspects of this general problem. First, we obtain
those power-law dependencies of transpiration velocity and wall heat flux which allow the
governing equations to be reduced to similarity form. These ordinary differential equations



266 M.A. Chaudhary and J.H. Merkin

are then treated in some detail. We find that their solution depends on the two basic
parameters n (the exponent for the variation of wall heat flux) and y (the non-dimensional
transpiration parameter; y >0 for blowing, v <0 for suction) as well as on the Prandtl
number o. We start by considering the range of existence of solution, showing that, for
blowing, a solution exists only for n > —1 (independent of y and o), whereas for suction a
solution exists for n > n,, where ny < —1 and where n, depends on v and o. We then go on to
obtain asymptotic solutions valid for large |y|. For suction the form of this solution is found
to be independent of n. However, for blowing, the structure of this asymptotic solution
depends on n, with it having an essentially different character in the three ranges —1<n < -—
+, —1<n<}, n>7. There is an unusual and, perhaps, unexpected aspect of the solution
for n is the range —1<n <} in that the boundary-layer becomes thin, with a thickness of
O(y™"), for y large. In all the other cases reported the effect of blowing is to increase the
boundary-layer thickness.

In the final part of the paper we consider the, perhaps, more realistic case of uniform heat
flux with uniform transpiration velocities. Here the governing boundary-layer equations
cannot be reduced to similarity form and the full partial differential equations have to be
solved. To do this we obtain numerical solutions starting at the leading edge and asymptotic
solutions valid for large distances from the leading edge, being guided in this latter aspect by
the insights gained previously from the similarity solutions.

2. Equations

The equations governing the steady free convection boundary-layer flow on a vertical surface
in a fluid of kinematic viscosity v are, on making the usual Boussinesq approximation,

u Jv

-5;+‘5;=0, (1a)
ou ou 0’u
u'(:";+va_y=gﬁ(T—T0)+V'ay—2, (lb)

Uy =— 2 (10)

where g is the acceleration due to gravity, B the coefficient of thermal expansion and o the
Prandtl number. Co-ordinates x and y measure distance along the wall and normal to it, with
velocity components u and v respectively. T is the temperature of the fluid in the boundary
layer and T is the (constant) ambient temperature.

The boundary conditions to be applied are

oT
v=u,(x), u=0, 3;=—q(x) on y=0, (2a)

u—0, T->T, as y—ow; (2b)

k is the thermal conductivity and v, (x) and g(x) are the transpiration velocity (v, >0 for
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blowing, v,, <0 for suction) and heat flux, which can depend on the distance x from the
leading edge.

To make equations (1, 2) dimensionless, we assume that v, (x) and g(x) are characterized
by scales v, and g, respectively. We then introduce scaled variables

_ VUO vz V2 U(Z)
u=Uu, v=(T) v, x=lIx, y=(70) v, T—T0=EB—10, (3a)

where / is a streamwise length scale and where U is a scale for the free convective flow, and
is given by

(5 )

Using (3), equations (1,2) become in dimensionless form (on dropping the bars for
convenience),

Ju adv

axtay =0 e
ou ou o’u

u‘£+v@=0+—a7, (4b)

a0 60 1 9%
u-a;+v5=;§, (4c)

subject to the boundary conditions

00
v=y0,x), u=0, 5=—q(x) on y=0, (5a)
u—0, 6—0asy—>x», (5b)

where the dimensionless transpiration constant

] 1/2 14 gﬁqo 1/5
v=ulsg) =ul=52)

and where 0,(x) and g(x) are dimensionless functions of x.
Equations (4, 5) can be reduced to similarity form in the particular case when

O, (x) =x""V" g =x", (6)

for a given exponent n. To do this we put

5 43 (n+4)/5 5 s (4n+1)/5
(/,: n+4 X f(n)’ 0= n+4 X h("l),

n+4\s _
le( - ) yx(n 1)/5’

(N

where ¢ is the stream function defined in the usual way. Note that we must have n> —4 to
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have forward boundary layers, in the sense discussed by Kuiken {10, 11], and hence have
exponential decay in f' and 6 as n— ». We will now assume that n > —4 throughout.
Using (7), equations (4, 5) become

o (Znt3)
f +h+f—<n+4>f =0, (8a)
1 dn + 1\ | _
;h +fh——<n+4>fh—0. (8b)

The boundary conditions are
fO)=-y, f(©0)=0, r(0O)=-1, (8¢)
f'=0, h—>0 as n—ox, (8d)

where primes denote differentiation with respect to n and where y has been rescaled by a
factor (5/(n +4))*'°. In (8c) y >0 for blowing and y <0 for suction.
We start by discussing the similarity equations (8).

3. Similarity equations
In this section we discuss the solution of equations (8a, b) subject to boundary conditions

(8¢, d). We assume that n > —4 throughout (for exponential decay of f’ and 8) and start by
examining the range of values of n for which a solution to equations (8) exists.

(a) Range of existence of solution

We start by integrating equation (8b) from 7 = 0 to — o and applying boundary conditions
(8c, d) to obtain

5(21[1) f: f'h dn=%+'yh(0). 9)

(A similar result for the case y = 0 has been given by Merkin [12].) Now, to have a realistic
solution with unidirectional flow, i.e. to have f'(n)=0 and h(n)>0 on 0=y <=, the
integral on the left hand side of equation (9) will be positive as will both terms on the right
hand side for blowing (y >0). Hence, in this case, we must have

n>-1, y=0 (10)

for a solution of equations (8) to exist in the required form. For suction (y < 0) this does not
apply and further considerations are required to determine the range of existence of
solution.

To see that equations (8) do in fact have a solution for values of n << —1 we obtained a
numerical solution for ¥y = —0.5. The results are shown in Fig. 1, where we plot f”(0) and
h(0), related to the skin friction and wall temperature respectively, against n (for o = 1.0). A
detailed examination of the numerical results indicates that the solution terminates at a value
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Fig. 1. Graphs of (a) f"(0), (b) A(0) plotted against the exponent n for suction y = —0.5, obtained from a numerical
solution of equations (8).

n =ny= — 1.187 and that both f"(0) and h(0) remain finite as n— n,, though the gradient of
the curves is increasing rapidly as n, is approached.
To calculate the value of n, we proceed as follows. We put

n=n;te, 0<e<l (11)

and leave equations (8) unscaled, (this is suggested by the numerical results). We then look
for a solution valid for small ¢ by expanding

fn; €) = fy(m) + &' *fi(n) + ef(m) + -+,
(12)
h(n; €)= ho(n) + £'"°hy(n) + ehy(n) + - - - .

At leading order we obtain equations and boundary conditions which are essentially
equations (8) the only differences being that # is replaced by n,. At O(¢''?) we obtain the
homogeneous problem

" ”n " 2n0+3 " ’
TthHhfitfofi—2 ng+ 4 of1=0, (13a)

1 " ' ’ 4n0+ 1 ’ ’
S H i+ = (T )iy + o) = 0 (13b)
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subject to the boundary conditions
£fi(0)=f1(0)=hY(0)=0, fi—0, h—0 as n—o, (13¢)

Now equations (8) have a solution for all values of n = n, and for general values of n in
this range the homogeneous system (13) has only a trivial solution. However, for just one
specific value of n (i.e. at #n = n,) equations (13) do have a non-trivial solution and it is this
requirement that determines the value of n,. This has to be done numerically by taking
f1(0) =1 and then taking n, as one of the parameters to be adjusted in the boundary-value
matching program. Reliable estimates for y= —0.5 were supplied from the previous
calculation and the solution could then be systematically advanced to different values of y.
The results are shown in Fig. 2. We can see from this figure that the value of n, depends on ¥y
and that ny,— —1 as y— 07, while n,— —4 as y— —». Both of these limiting cases will be
discussed below.

We now return to the problem of finding the solution for small £ noting that we would not
expect the solution of equations (13) to have fj(0)=1 and that the general solution
(fi» hy, 1), with f2(0) = K (say), can be obtained from our particular solution (f,, k,, 7) by
putting

flszl’ Elthl’ 1_’=1" (14)

The equations at O(e) are, on using (14),

Y eI E
et RS IRl Gy i B (159)

)i+ £200)

S i (e
=ﬁf6 k{7 - (G ik ). (15b)
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Y

Fig. 2. A graph of n, plotted against y (for o =1.0). The solution of equations (8) exists only for n>n,. The
expansion for small y given by (26a) is shown by the broken line.
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with boundary conditions
£0) =f)0)=hy0)=0, f;—0, h,—0 as n—c. (150)

Now, to solve equations (15) numerically we have first to construct two particular integrals
(f,, h,) and (f,, h,), which satisfy (15c) at n =0 and have f7(0) =0, h,(0)=0 (i =a, b). For
(f,, h,) we put K =0 in equations (15a, b) and for (f,, h,) we put K =1 and remove the first
term on the right hand sides of these equations. We then construct two complementary
functions (f,, k) and (f,, h,), by taking f2(0)=1, h,(0)=0 and f(0) =0, h,(0)=1. The
full solution of equations (15) is then

L=A+uf, +f, +K*,, h,=Ah, +ph,+h,+K?h,, (16)

for some constants A and p.
As n— x, equations (15a, b) show that

A.
h,—A,, f:~-a’)n+B,- (i=1,b,c,d), (17a)

where C,=lim,_, fy(n), and to satisfy the boundary conditions as n— o we must have

M +pA+A,+K*A,=0,
AB.+uB,+B,+K’B,=0. (17b)

However, the existence of a non-trivial solution to equations (13), which are the left hand
sides of equations (15), guarantees the existence of a complementary function for these latter
equations which satisfies all the required boundary conditions. Hence we must have

AB,=A,B,, (170)

and it is then the requirement that equations (17b) are consistent that determines K, which,
with (17¢), gives

2 _ BaAc _ Ach
K = A,B.—B,A. (17d)

We can now see why the solution cannot be continued past n = n,. Consider a solution of
equations (8) for a general value of n > n,. A perturbation to this solution caused by making
small changes in n will be a regular perturbation and the resulting equations, equivalent to
the equations at O(¢) in the above, will have a well-defined solution. This can be found from
equations (17b) (with K = 0) which are now consistent since (17¢) no longer holds. However
at n=n, the equations at O(¢) have a complementary function which satisfies all the
required boundary conditions, in fact it was this requirement that determined n,, and
equations (17b), with K =0, are now inconsistent. To remove this difficulty a singular
perturbation, in powers of &', is needed giving

1O =f0) +K(n—ny)' 2 +---,

h(0) = ho(0) + Khy(0)(n — )" + -+,

(18)
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as n—n, where K depends on y and o. (18) shows the singular nature of the solution at
n=n,.

We now consider the behaviour of n, as y— 0. A consideration of equations (8) suggests
that we should put

n=-1+nly|”*+---, (19a)
with then
F=WITYF, h=lW|'H, {=|y|""", (19b)

where n, is to be determined. We look for a solution by expanding
F(y)=F() + Iy R+,

H(L3y) = Hy(0) + " H () + - (20)

At leading order we obtain the equations

1
-3 F*=0, (21a)

Fy+ Hy+ FFy—3

1

7 Hot FoHy=0, (21b)
where equation (21b) has been obtained by integrating once and applying the boundary
conditions, which are

Fy(0)=0, Fy0)=0, Hy0)=0, F;—>0, H,—>0 as (—x (21¢)

(primes now denote differentiation with respect to ¢). Equations (21) have arisen previously
in [12] where it has been shown that they have a non-trivial solution (F,, H,, ), with
Fi(0)=1 and then, for ¢ =1, H,(0)=0.87606. The general solution, (F,, H,, {) with
F?(0) = L can be obtained from this particular solution by the transformation

F,=L'’F,, H,=L*’H,, (=L""'°[. (22)

At O(]y|>"*) we obtain the equations for (F,, H,, {), where F,=F,, H,=LH, and { is
given by (22), namely

25 __ 5 _
Fy+ H, + F,Fy— 3FoF, + FgF, =gn,L'°F’ (23a)
- - 5 - -
—H"+FH’ +F,H,+F H, + F,H,= §n1L1’3F3H0, (23b)
subject to the boundary conditions
F(0)y=1, F(0)=0, H)(0)=-L*?, F;-0, H—0 as (—». (23c)

Equations (23) have a non-trivial complementary function, F, = ZF}+ F,, H, = { Hy+ 4H,
which satisfies homogeneous boundary conditions at £ =0 and as { — » and hence to discuss
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the numerical solution of equations (23) we need only consider particular integrals. We
construct three such particular integrals, namely (F,, H,) which has F,(0) =0, H(0) =0 and
the term n, L'’ replaced by unity, (F,, H,) which has F,(0) =1, H;(0) =0 and the right hand
sides of equations (23) put to zero, and (F,, H,) which has F.(0) =0, H(0) = —1 and again
the right hand sides put to zero. Now, as { —

c?
H—>C, F;~——C+{+D1 (i=a,b,0), (24a)
0

where C, =lim,_,,, F,. Consequently to satisfy the boundary at {— © we must have
n,L'"°C +C,+L*?C =0, (24b)
nL'”D,+D,+L"*’D,=0. (24c)
Equations (24b, ¢) now determine #, (and L), as

L3 = ¢,D, - C.D, 1/3 _ D,C.— C,D,

B DcCa - CCDII ’ nl B CﬂDC - DHCC ) (25)

Numerical integrations of equations (23) give, for o =1, C, =0.841484, D, A= 0.878057;
C, =0.605311, D, = —1.576148; C. = —0.690947, D_ = 3.811802, leading to L = 1.71518 and
n, = —0.26683, from which it follows that, for o =1,

ny~-—1-026683y[**+--- as y—>0. (26a)
Furthermore, from (19b) and (22) we have that, for o =1,
h(0)~1.79864|y| ' +---, f"(0)=1.71518y| >+ --- (26b)

as y—07. A graph of n, obtained from (26a) is also shown in Fig. 2 (by the broken line)

where we can see that it is in good agreement with the computed values for y small.
Finally, it remains, in the present context, to consider the nature of the singularity in the

solution as n— —1 for blowing (i.e. ¥ >0). This is what we treat in the next section.

(b) Solution as n— —1 for y >0

To discuss this case we put

n=-1+8, 0<6<1 (27)
and take y to be of 0(1). A consideration of equations (8) then suggests that we put

f=87'F, h=8""'H, =679 (28a)
and look for a solution by expanding

F(1;8)=Fy(r) + 8F,(v) +---, (28b)

H(r;8)=Hy(r) +8H (7)+ - -. (28¢)



274 M.A. Chaudhary and J.H. Merkin

At leading order we obtain the system given by equations (21) and boundary conditions
(22), now taking the general solution to have Fy(0) = M (say). At O(§) we obtain equations
(23a, b) but now with n, =1 (and L replaced by M) and subject to the boundary conditions

F,(0)=-y, Fy0)=0, H(0)=0, F;—>0, H—0 as 7, (29)

The numerical solution of this problem then requires only the two particular integrals
(F,, H) and (F,, H,) with the condition as 7— o giving

ch)s
C .

a

M'*C,—vC, =0, M=( (30)

From the values given previously we find that M = 0.37222y> for ¢ = 1. It then follows that
h(0) ~0.23457y*(n + 1) "+ - - -, (31a)
F(0)~0.37222y*(n+ 1)+ -+ -, (31b)

as n— —1 from above.

(a)

1.2 S

0.8 -

(n+1)%f'"(0)
0.4 1

0.0 T T —T T
-0.8 -0.6 0.4 0.2

(b}

25

20 4

1.5 -
{n+1)*h{o)
1.0

0.5

0.0 T T T T
0.8 0.6 0.4 0.2

Fig. 3. Graphs of (a) (n + 1)’ £7(0), (b) (n + 1)* h(0) plotted against n for blowing y = 1.0 (shown by the full lines).
The broken lines are the asymptotic values given by equation (31).
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As a check on the above analysis we solved equations (8) numerically for y =1.0 (and
o =1) for decreasing values of 7. The results are shown in Fig. 3 where we plot (n + 1)’f"(0)
and (n + 1)*h(0) against n (shown by the full line). The broken lines show the appropriate
asymptotic values given by (31). These graphs show that these asymptotic values are
approached as n— —1 and acts as a confirmation of our theory.

The asymptotic forms (31) will not hold as y— 0 where the behaviour for the case y =0,
as given by Merkin [11], will be recovered. In [11} it was shown that f"(0) is of O((n +
1)7%%) and A(0) is of O((n + 1)"*'®) as n— —1. From (31) it then follows that these forms
will hold when vy is of O((n +1)*°) as n—> —1, in line with the results given previously in
(26). A solution can then be developed for both (n + 1) and vy small using these scalings.
This follows very closely those already described and is not pursued further here.

We can get further insight into the nature of the solutions of equations (8) by considering
their behaviour as |y|—c, and this is what we now do.

(c) Solution for strong suction

Here we obtain a solution of equations (8) for y <0 valid as |y|— . The solutions for
strong suction for the prescribed wall temperature case [3, 5] suggest that we put

f=y+W[*s, h=Iy'T, &=|yh. (32)

On substituting (32) into equations (8), we find that, at leading order

T=1e™™, (33a)
=ﬁ;1“_—1)(e—°§—(re_§+(r—l), (c#1), (33b)
=1-(&+1)e™, (o=1). (33¢)

(33¢) can be obtained directly from the equations or by letting ¢ — 1 in (33b).
From (32) and (33) it then follows that the boundary layer becomes thin, with a thickness
of O(|y|™") and that

rO)~a 'y '1+O(ly| %),
10~ oy 2+ oy %)), (34)

f)~—y+aly|*A+ 0|,

as |y|— . This asymptotic behaviour can be seen in Fig. 4, where we plot values of f"(0),
f() and h(0) against y (for n = 1 and o = 1) obtained from a numerical solution of equations
(8) (shown by the full lines). The asymptotic solution for |y| large as given by (34) is also
shown (by the broken lines). These figures show that these asymptotic forms are approached
rapidly as |y| is increased, and are in close agreement with the numerically determined
values from y = —1.6. This is, perhaps to be expected as the error in the leading order terms
is of O(ly|™).

It is worth noting that expressions (33) are independent of the value of the exponent 7.
This enters the terms of order O(}y] ) in expansion (34). Consequently, equations (8) will
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Fig. 4. Graphs of () f"(0), (b) f(0), (c) A(0) plotted against |y| for suction, with n =1, o = 1. The asymptotic forms
(34) are shown by the broken lines.

have a solution for all n (provided only that n > —4, the condition required for forward
boundary layers) in the limit as |y|-»> . This is in line with the results shown in Fig. 2.

(d) Solution for strong blowing

Here we obtain a solution of equations (8) for y >0 valid as y— « and where we assume,
from the discussion in the previous section, that n» > —1. The numerical solutions of these
equations show that both the skin friction f”(0) and wall temperature £(0) increase and that
the boundary layer thickens as vy is increased. To get the initial scalings for this limit we start
by noting that f is of O(y) and that we expect the leading order terms to be given by the
inviscid versions of equations (8). Now, suppose that 4 is of O(y") and the boundary layer
has thickness of O(y") as y — =, for some positive exponents r and s to be determined. Then
a balancing of the inviscid (convective) terms, of O(y>~*), and buoyancy force term, O(y"),
gives r =2 — 2s. Also, the viscous terms are of O(y "' **) relative to the convective terms,
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and h'(0) is of O(y"™"). Now, when we come to solve the transformed equations we find that
we must have A'(0) = 0 at leading order (so r >s) and that the perturbations to the leading
order solution from 4’(0) and from the viscous terms should be of the same order. This gives
a further relation between r and s, namely r =2s + 1, then giving r =3/2, s =1.

The above discussion’suggests that we start by putting

f=—vd, h=y""g, y=y9""%. (35)

Equations (8) become

¢¢n_a¢12+g_‘y—5/4¢n/=0, (363)

1 - "
g —pd'g——v "g"=0, (36b)

where primes denote differentiation with respect to y and where, for ease in the discussion to
follow, we have put a@ = (2n + 3)/(n + 4) and 8 = (4n + 1)/(n + 4). The boundary conditions
to be satisfied are

#(0)=1, ¢'(0)=0, g'(0)=—y ", (36¢)

The outer boundary conditions are relaxed at this stage.
Equations (36) suggest that we look for a solution for y large by expanding

d(y;7)=d(y)+ vy d(W) + -,

g(y; ) =8N +y () + - (37)
At leading order we obtain from equation (36b)

080~ Bb8o=0. (38a)
The solution of equation (38a) subject to the condition, from (36c), that gi(0) =0 is

g0 = kot (38b)

for some positive constant k to be determined. We note that (38b) satisfies g¢(0) =0, and
that the condition #'(0) = —1 cannot be satisfied at this order. Equation (36a) then gives

bod— ady’ + kb =0, (39a)
subject to
$(0)=1, ¢¢0)=0. (39b)

Equation (39) can be solved implicitly to get

2k 1/2
o= —(5amp) @503, (40a)
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and then
2k \'? ! dt
<2a _ B) y= J-% (tﬂ _ t2a)1/2 . (40b)

Note that 2a — B =5/(n +4)>0.

Since 2a > B, (40a) shows that ¢, <0 on 0 < ¢, <1 and hence ¢, is a monotone decreasing
function of y in this interval, and that ¢;=0 at ¢, =0 (as well as at ¢, = 1). Furthermore,
the integrand in (40b) is of O(t #'?) as t—0 and the integral will exist (as an improper
integral) as ¢,— 0 provided 1 — 8/2>0, i.e. n <7/2. Alternatively, this result shows that ¢,
will be zero at a finite value of y (y,, say) for n<7/2, whereas for n=7/2, ¢,—> 0 only as
y— . For n=7/2 (a =4/3, B =2) equation (40b) yields the specific solution

by = sech3<\/§ y) , 8=k sech6(\/§ y) , (41a)

and then
b, ~8exp(—V3ky) as y-—x, (41b)

For n>7/2 the decay as y— = is only algebraic, with

k(B *2)2)1/(2_‘3) 2/(2-8)
¢0~<2(2a__B) y as y—>x, (42)
For n <7/2, equation (40b) shows that ¢, =0 at y =y, where

2a — B\V2 (! dt
)’o=< k ) L (tﬂ _t2a)1/2 . (43a)

This integral can be evaluated in terms of Beta functions [13], as

o= (22 4)w>“2 (-5):

10k (1 - n>' ’
5!
This completes the discussion of the leading order solution and we can now turn to the

terms of O(y ~>'*) in expansion (37). We find that we need only consider the equation for g,
at this stage, which is

n< 5 . (43b)

1

b081~ Bbeg: + ¢180 — Bbigo =" &0 (44a)
subject to

g1(0)=-1. (44b)

A solution to equation (44a) can be expressed as
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KBoo  [* (3B—2)¢5—2(a+B - 1oy’
=kBoE ', + A 95+ < f e - ds 4
81 =kBd, & +A ¢, (e - B)a Jo d)g ds (45)
for some constant A,.
It is the application of boundary condition (44b) that then determines k as
1/2
k=<%) , B>0. (46)

We can now see why the perturbations to the leading order solution from the viscous terms
and from the heat flux boundary condition have to be of the same order. The final term in
expression (45) comes from the viscous term in equation (44a) and without this term the
boundary condition (44b) could not be satisfied. Conversely, the inclusion of this term, but
now trying to apply the boundary condition g;(0) = 0 also leads to an inconsistency. Finally,
we note that (46) holds only for 8 >0, i.e. n> — 7, and the case —1<n < —1} will require
further discussion. We can also see from (38b) that a problem arises for # in this range, since
we must have 8 >0 to ensure that g, remains bounded as ¢,— 0.

The above discussion shows that we have three separate cases to consider, namely # in the
ranges —1<n<—1, —1<n<], n>7. We start by considering » in the range —4 <n <7,
i.e. 0<B <2. Here, from (35), (38b) (40a) and (46), we have that

£7(0) ~ <%)1/271/2 +eoe, h(0)~ <%)1/273/2 Foee, 47

as y— . Graphs of f”(0) and A(0) calculated from a numerical solution of equations (8) for
n=1 and o =1 are shown in Fig. 5 (by the full lines). Also shown in this figure (by the
broken lines) are the asymptotic forms as given by (47). We can see that the two sets of
curves are approaching each other as vy is increased, though the convergence is slow (the
error is from (37), of O(y ~>'*)). The agreement was seen to improve at higher values of y
(not shown on these graphs). We note that, for n=1 (a =8 = 1) equations (38b) and (40)
give the simple solution.

1 k
¢y =5(1+cos(V2k y)), go=7 (1+cos(V2k y)), (48a)
with (46) giving k = o'’?, and (48a) giving

yo=2Vo) ’r, (48b)

in agreement with (43b).

In this case the outer boundary conditions are satisfied at a finite value of y, the point y,
given by (43b), and not smoothly as y — . Thus an outer region is required, which will be
thin relative to the inner region (given by (35)) and in which the viscous terms will be
important at leading order. To get the scalings for this outer region we first have to
determine the forms of ¢, and g, as y—y,. A little calculation reveals that
MO gy~ kuP(y, = y)PR, (49)
as y— y,, where the constant u = [(2k/2a — 8)"/*(2 — B/2)]*'*™# (with k given by (46)).
For n =1 (49) reduces to ¢,~ k/2(y,—y)’ as can be calculated directly from (48).

by~ n(yo—y)



280 M.A. Chaudhary and J.H. Merkin

(a)

1.8 -
"’
l/"
1.6 e
f1 1 ( O) '//
1.4 4 -
ﬂ"”’
1.2 7
1.0 T T T T T —7 T
0.2 0.6 1.0 1.4 18 22 28
Y
(b
7

h(o)

Fig. 5. Graphs of (a) f"(0), (b) h(0) plotted against y for blowing with n = 1, o = 1. The asymptotic forms given by
(47) are shown by the broken lines.

To get the scalings for this outer region we note that the solution must match with (49) at
its inner edge, and that all the terms in equations (8) must balance. This leads us to write

f=7(2—n)/6®, h=72(2—n)/3G, n:yll4y0+'y("_2)/6Y. (50)
Substituting (50) into equations (8) gives

"+ G+ PP — ad'’=0, (51a)

1

;G"+<I>G’—B<I>'G=0, (51b)
where primes now denote differentiation with respect to Y. The boundary conditions are that

P'—-0, G—0 as Yoo, (51¢)
and, from (49) on matching with the inner region, that

D~ —p(-Y)C B G~kpf(-Y)PCP) as Y oo, (51d)
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The solution of the shear layer equations (51a, b) subject to boundary conditions (51c) and
matching conditions (51d) then completes the solution (at least to leading order).

It is worth noting that the scalings for this outer shear layer, given by (50), depend on the
exponent n. This is somewhat unusual and did not occur in the prescribed wall temperature
case [5]. Also, this shear layer has a thickness of O(y” %) which is thin relative to the
inner inviscid region, of thickness O(y''*), only for n<7 which is the case we are
considering. For n =] (i.e. B = 2) the solution is given by (41) with k given by (46), and has
exponential decay as y—>». A consideration of the higher order terms in the expansion
suggests that these will also all have exponential decay at infinity and hence the complete
solution is given by the solution in the inner region, with no further outer region being
required.

Now consider the case n > 7 (B >2). Here the solution in the inner region is still given by
(40) but now y,— = and the behaviour of ¢, (and hence g,) for large y is given by (42), with
k given by (46). The decay is now only algebraic and we expect [14] that the higher order
terms in the expansion will lead to algebraic growth at large y. We find this to be the case and
a further outer region is required to achieve the outer boundary conditions (through
exponential decay). The thickness of this outer region will be large in relation to the inner
region and the scalings for it are essentially the same as (50), though the independent
variable Y is not now centred on y,. Thus, in this case, we write

f= y(2—n)/6q) . h= 72(2_")/3G . op= 7(n~2)/6Y. (52a)

Substituting (52) into equations (8) leads again to equations (51a, b) to be solved subject to
boundary conditions (51c). However, the matching with the inner region, now leads to the
inner boundary conditions that

B=—pY YE Dy G=—kpfYy P4 a5 Y0, (52b)

with p as defined above. The solution of this problem given by equations (51a, b, c) and
(52b) then completes the solution to leading order. Before leaving this case we note that the
thickness of the outer region is still of O(y”™?’®) but this is now large relative to the
thickness of the inner region.

Finally we have to consider the case —1<n < —1}. Here B <0 and the solutions given
previously for n > — 1 cannot apply and a new structure is required. Numerical solutions of
equations (8) for n = —} show that the boundary thickness decreases as y is increased in
contrast to the previous cases where it increased with increasing y. This suggests that the
viscous terms will be important to leading order. To obtain the scalings for this case, we will
still have f of O(vy). If we again assume that 4 is of O(y") and that the boundary layer has a
thickness of O(y*) then a balancing of all the terms in equation (8a) gives 1 —3s =r=2 — 2s,
i.e. s=—1, r=4, so that the boundary layer has a thickness of O(y ') and the wall
temperature is large, of O(y*).

The above suggests that we put

f=vb, h=v'%, y=w, (53)
with equations (8) becoming

" +g+dd"—adp'’=0, (54a)
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1

— 8"+ ¢g' —Pb'g=0, (54b)
subject to the boundary conditions

$(0)=-1, ¢'(0)=0, g'O=-y">, ¢'>0, g—>0 as y—>o. (54¢)

Conditions (54c) suggest that we look for a solution by expanding in powers of y . The
leading order terms satisfy equations (54a,b) and conditions (54c) with g'(0)=0. A
numerical solution gives, for o =1, g(0) = 1.10544 and ¢"(0) = 0.83005. Hence,

£'(0) ~0.83005y> + - -, h(0)~1.10544y*+--- as y—oo. (55)

We solved equations (8) numerically for n = —1 (and o = 1) for increasing y. The results
are shown in Fig. 6 (by the full lines) where we plot y —*f"(0) and y ~*4(0) against y. These
curves can be seen to approach the constant values (shown by the broken lines) as suggested
by (55) for increasing y and confirms the above theory. Note that the approach to this
asymptotic solution is much more rapid than was previously seen for n =1. This is to be
expected as here the error is much smaller, O(y ).

(@

30
2.0 A
73 ¢t
Y (o)
1.0 4
0.0 T T T T T T T
1.2 16 20 24 28 32 3.6
Y
(b)
8
6 -
4
¥*h(o) , |
2
0 T T T T T T T
1.2 1.6 2.0 24 28 3.2 3.6
Y

Fig. 6. Graphs of (a) ¥ “*f"(0), (b) ¥ ~*h(0) plotted against y for blowing with n = —0.5 and o = 1. The asymptotic
forms given by (55) are shown by the broken lines.
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We have now completed our discussion of the similarity equations (8) and we consider
next the case of uniform wall heat flux with a uniform transpiration velocity.

4. Uniform wall conditions

Here we obtain a solution of equations (4) subject to the boundary conditions (5b) and that

v==*1, u=0, ggr—'—l on y=0 (56)
(throughout this section the upper sign will be taken for blowing and the lower sign for
suction). This problem does not have a similarity solution and to obtain a solution valid for
all x =0 the governing equations have to be solved numerically. The first step in obtaining
such a numerical solution is to make a transformation of equations (4) appropriate to the
solution for x small. To do this we put

v=Fx+x*"’f(x,n), 0=x"’h(x,n), n=y/x'"”. (57)

Equations (4) become

o’f (4 _ ) o’f 3(6f)2 (af f _of azf)
6173+h+ 5_f+x }7—5 5;_,- = gﬁm*ﬁ;ﬂ; , (58a)
18°h (4 1,5) oh 1 of (af oh afah)
;an2+(§f+x am 3o = \epax axom) (58b)
subject to the boundary conditions
d oh i)
f=0, 3{;= , %=—1 on =0, a—;’;—»O, h—>0 as n—x, (58¢)

Equations (58) show that the behaviour for small x is given by the solution for uniform
wall heat flux without transpiration, given previously by Sparrow and Gregg [15]. Transpira-
tion effects give an O(x'’®) correction to this and lead to an expansion in powers of x'’*. This
is straightforward to obtain and is not pursued further, except to note that to develop the
numerical solution from x =0 we must use a streamwise variable £ =x'">, with equations
(58) being transformed accordingly, to accommodate the fact that derivatives with respect to
x become infinite as x— 0.

The numerical method we used is essentially the same method that we have used
successfully on other similar boundary-layer problems and is described in a little detail in
[16]. We started the solution from x =0 using equations (58) (with x replaced by £) and
integrated forwards until x =1 (£ = 1), where we reverted to solving the original equations
(4). The velocity and temperature profiles calculated at x =1 from equations (58) were used
as starting profiles for the solution of equations (4) for x >1 and thus a smooth transition
from one solution regime to the other was achieved. We decided to adopt this strategy rather
than use a continuous transformation of variables, as suggested by Hunt and Wilks [17], in
order that the behaviour for large x might be more clearly seen, and so as not to impose any
particular form of behaviour on the solution for large x.
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(a) Suction

Consider first the case of suction. The results obtained from the numerical integration of
equations (4) and (58) are shown in Fig. 7 where we give plots of the skin friction
parameters 7, = (3u/dy),_, and the wall temperature 6, = 6(x, 0) against x (for o =1). We
can see from this figure that §, — 1 very rapidly, and that 7, — 1, slightly more slowly, as x is
increased. Also, the numerical results showed that the solution became uniform in y for
large x, with the boundary layer having a constant thickness and the velocity and
temperature profiles being dependent only on y.
To examine this behaviour in more detail we put

Y(x, ) =x+¥(y) + (x, y), 0=06(y) +hx.y), (59)
where ¢(x, y) and h(x, y) are small for x large. Equations (4) give

W40, + V=0, (60a)
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Fig. 7. Graphs of (a) skin friction 7, (b) wall temperature 6,, for uniform suction and uniform wall heat flux, with
o =1, obtained from a numerical solution of equations (4) and (58). The asymptotic solution is shown by the
broken line.
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1
—85+6,=0, (60b)

which have solution, satisfying

Y, (0)=0, ¥y (0)=0, 6(0)=-1, ¥;—»0, 6—>0 as y—ox, (60c)
as

6,=0'e ", (61a)

L e —age™+o—-1] (c#1), (61b)

o~ a(c—1)

=l—-e”?—ye? (oc=1). (61¢)

From (61) we see that

0@__)1’ 7—»% as x—®, (62)
o o
and these are the results shown in Fig. 7.
Next we consider the equations for ¢(x, y) and h(x, y). Since these are small for x large
products of terms involving ¢ and A can be neglected to leading order. This leads to linear
equations and we look for a solution of these by putting

d(x, y) =e “®(y), h(x,y)=e “H(»). (63)
The eigenvalue A is then found from the system

@+ H+ "+ A(¥)d' —¥'d)=0, (64a)

1
—H"+H' + A(V;H - 6;0) -0, (64b)

with boundary conditions
$(0)=0, ®'(0)=0, H'(0)=0, ®'—>0, H—0 as y—ox. (64c)

The form of solution (63) could also involve a power of x, see, for example, Stewartson [18],
though the dominant behaviour will be given by the exponential.

It is readily seen that the eigenfunctions ¢ and h cannot be an inverse power of x
multiplied by the corresponding functions of y. For if this were the case then the equations
for ® and H would be (64a, b) with the terms involving A put to zero, and these cannot have
a non-trivial solution satisfying boundary conditions (64c).

The problem then is to find the largest value of A which gives a non-trivial solution to
equations (64). This had to be done numerically, forcing a non-trivial solution by taking
®"(0) = 1. The resulting eigenvalues A were seen to depend on the Prandtl number o and are
shown in Fig. 8. For o0 =1, we found A =0.40048, and as o is increased the largest
eigenvalue also increases rapidly, while for o <1, it decreases rapidly. This shows that the
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Fig. 8. The largest eigenvalues A calculated from equations (64) plotted against o, (a) o<1, (b) o =1.

—A{o)x

rate of approach to the asymptotic profiles (61), which is of O(e
increase rapidly with increasing Prandtl number.

) for x large, will

(b) Blowing

The results obtained from solving equations (4) and (58) for the case of blowing through the
wall are shown in Figs. 9 and 10. In Fig. 9 we give graphs of 7, and 8, for small x. The
singular behaviour as x— 0 in 7, of O(x*"*), and ,, of O(x''*), given by (57), can clearly be
seen in these graphs. In Fig. 10 we give plots of 7, and §, for larger values of x; note that in
these figures they are plotted against log x. Figure 10 shows that both the skin friction and
the wall temperature increase with x. The numerical results also show that the boundary-
layer thickness increases with x and that the velocity and temperature profiles develop a
two-layer structure with there being a thick inner region next to the wall made up chiefly of
fluid blown through the wall and a much thinner outer shear layer at the outer edge of which
the ambient conditions are attained.

To complete the discussion we derive a solution of equations (4) valid for large x. We start
by obtaining the scalings for the inner region, in which we assume that the temperature is of
O(x") and the boundary layer has a thickness of O(x*), for some positive exponents r and s
to be found. Now, in this inner region which will be basically inviscid, the stream function ¢
is of O(x), with a balancing of convective and buoyancy force terms then giving r =1 — 2s.
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Fig. 9. Graphs of skin friction 7, and wall temperature 6, for small x obtained from the numerical solution of
equations (58) with o =1.
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Fig. 10. Graphs of (a) skin friction 7,, (b) temperature 6,, obtained from the numerical solution of equations (4)
and (58) with o = 1. The asymptotic solution (79) is shown by the broken line.

To obtain a further relation between r and s we are guided by the previous work on the
similarity solutions. Here we found that the perturbations to the leading order solutions
arising from the wall heat flux boundary condition and from the viscous terms had to be of
the same order. Applying this condition here gives ~s =s —r, and hence r =3, s = 1.
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The above suggests that for this inner region we put
U=-xp(x,0), 0=x"%(x0), =y, (65)

with equations (4) becoming

Of BV, wdf_ (o Ff o o

fa—gz—z<a—;> tg—x af""(ag 3 ox o a;z>’ (66a)
g 1 of x "% (ofog of ag

Fot 289 "o ot <_<9_Zax_ax ag)’ (66b)

subject to the boundary conditions

f=1, g—’zzo, 3—};=—x_1/4 on (=0, (67)

the outer boundary conditions are relaxed at this stage.
Equations (66, 67) suggest looking for a solution by expanding

fe, O =f(OH+x R+,

gx, ) =go() +x g () + . (68)

At leading order we obtain the equations

fogs— 511800, (692)

=210+ 8,=0, (69b)
subject to

f0)=1, f0)=0, gy0)=0, (69¢)
(primes now denote differentiation with respect to ¢). The solution of equation (69a) is

go=«fy", (70)

for some constant « to be determined. Equation (69b) can then be solved to get
Fo= —VAR(1Y = £, (713
and then implicitly to

! dr
\/2_K§=ff0(tu—z_t3/z—)m- (71b)

Solution (71) satisfies f,(0) =1, f((0) =0 and has f, zero again at { = {, where
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(-3)

r\1/2
b= Vo o (t1/2_t3/2)1/2 =(§) (1)' )
7))

(72)

i.e. at {,=1.695« '

As for the similarity solutions the value of « is determined from a consideration of the
equations for next term in expansion (68). Again we need consider only the equation for g,
which is, using (70),

1 -
fgi-3fee =5 V-2 F3 ) + 5 8. (73)
The solution of equation (73) can be expressed as
2p0-1/4
Kf C1+f, .-
81= A, 1/4+ fol/2 1 42. J;) 9/40 dz, (74)

0

for some constant A ;. Now (74) satisfies the boundary condition g;(0) = —1 only if
Kk =V2o. (75)

The solution given by (71) satisfies the outer boundary conditions only at a finite value {;
of ¢, given by (72) and an outer shear layer is required to achieve a smooth transition to
ambient conditions. To obtain this we need the behaviour of f, and g, as { — {,, which we
find to be

90, 2/3 90. 1/3
() @0 e~vae(E) w-0". (76)
We then require an outer (shear layer) region centred on y = Lx'"* in which the viscous
terms are important at leading order and which should match with (76). A consideration of
the terms in equations (4) then suggests that we should put

y=x""F@x,Y), 6=x"Gkx,Y), Y=y/x'"", (77)

where y=y — {x'"*

If we substitute (77) into equations (4) and use Prandtl’s transposition theorem we arrive
at equations for F and G which we solve by expanding in powers of x~'"*. The leading order
terms of this expansion, Fy(Y) and G(Y), satisfy the equations

6 5

Fi+ Gy +=FFy—5F) =0, (78a)
1 6 3

~Gi+5F,G;~=FiG,=0, (78b)

subject to the boundary conditions

F;—0, Gy—>0asY—>x>, (78¢)
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and, on matching with the inner region, that

2/3 9 1/3

F,~ (%") (-Y)"?, G,~ \/20(7") (—Y)? as Yo ~o. (78d)
The solution of the problem defined by equations (78) then completes the description of the
asymptotic behaviour of the solution for blowing to leading order.

From (65), (70), (71) and (75) we have that
7, ~V2ax'? 4.+, 0, ~V2x'"?+---, (79)

as x— . Graphs of 7, and 6, given by (79) are also shown in Fig. 10. We can see that the
agreement between these asymptotic values and numerical solution is reasonable, better for
7, than for 6, though in both cases the convergence between the two sets of results is slow.
This is to be expected as the error in (79) is O(x''*) and extremely large values of x, beyond
the scope of the numerical integrations, are required before this is small in relation to terms
of O(x'"?).

5. Discussion

We have considered the effect that the injection or withdrawal of fluid has on free convection
boundary layers on vertical surfaces with prescribed wall heat flux. We have examined two
particular aspects of this problem in detail, namely those wall fluxes and transpiration
velocities which give rise to a similarity transformation and the case of constant wall
conditions.

In the former case we found that the solution depended on two basic parameters the
power-law exponent n and a dimensionless transpiration parameter vy (as well as on the
Prandtl number). We showed that the similarity equations had a solution (of the required
forward boundary-layer type) only for n> —1 for all y >0 (blowing), this result being
independent of the Prandtl number. For y < 0 (suction) we found that a solution existed for
all n>n,, where n, was determined by the solution of a system of equations and depended
on both y and the Prandtl number, with n,<—1 for y <0. The range of existence of
solution of the corresponding similarity equations for the prescribed wall temperature case,
first proposed by Eichhorn [1], has not been examined. For the case without transpiration it
has been shown in Merkin [12] that this range of existence depends on the Prandtl number
and that the structure of the solution close to the corresponding n, is essentially different to
that found for the prescribed heat flux case. Hence, it is reasonable to expect differences
between the two cases when transpiration effects are included.

We then examined the behaviour for strong suction and for strong blowing. For strong
suction, asymptotic profiles were found, similar in character to those found previously for the
prescribed wall temperature case [3,5]. However, for strong blowing the situation was
essentially different to that found for the prescribed wall temperature case. The structure of
the solution for large y depended on the value of n, with different behaviour in the three
ranges —1<n <-4, - <n<j, n>%. In the first case (—~1<n < —1) the boundary layer
became very thin (with a thickness of O(y ™)) and both the wall temperature and the skin
friction became large, of 0(74) and 0(73) respectively. This feature has not been reported
before for boundary layers subject to blowing through the wall where it is usually seen, for
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example in [6, 19, 20], that the fluid blown through the wall creates a thick inviscid inner
region, with there then being a thinner outer (shear) layer before the ambient conditions are
attained. The thinning of the boundary layer with n in this range for large injection rates is
unexpected.

The normal situation of a thick inviscid inner region with a thin viscous shear layer seen
previously for large injection rates is found to apply when »n is in the range —} <n<7.
However, for n > 7 the boundary-layer structure is again different. There is still the inviscid
inner region of thickness O(y'’*), but now the viscous effects are manifested in a thicker
outer region, of extent of O(y"**?®"~7''?). The solution for large injection rates has not
been examined in detail for the prescribed wall temperature case and the question as to
whether the form of the asymptotic structure is dependent on the value of n is still an open
one.

We then considered the, perhaps, more realistic case of constant heat flux and constant
transpiration velocity. This case does not admit a similarity solution and the governing
equations have to be solved numerically. This was done using a standard numerical
technique and presents no difficulties. We then derived solutions for large x (distance from
the leading edge) for both suction and blowing. In the former case the solution followed
fairly closely that found previously for the isothermal wall case [3]. However, differences
between this and the present case were seen in the asymptotic solution for blowing. Here we
found that the wall temperature became, large, of O(x''?), as x— =. Also, we needed to be
guided by our previous study of the similarity equations in order to ascertain correctly the
structure of the asymptotic solution.
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